14, August 2025

SYNTHESIS AND MULTI-TECHNIQUE ANALYSIS OF METAL NANOPARTICLES: A CASE STUDY OF AL, CU, NI, AND AG

Author(s): 1. Harsha Ram, 2. Dr. Kishor Patel

Authors Affiliations:

1 Department of Physics, Gokul Global University, Sidhpur, Patan, Gujarat (India) – 384151

2 Assistant Professor, Department of Physics, Gokul Global University, Sidhpur, Patan, Gujarat (India) – 384151

DOIs:10.2019/JSHE/202508001     |     Paper ID: JSHE202508001


Abstract
Keywords
Cite this Article/Paper as
References

Abstract: In the present research, nanoparticles of Aluminum (Al), Copper (Cu), Nickel (Ni), and Silver (Ag) were successfully synthesized using a chemical precipitation method that allows for efficient and scalable production. The structural features of the prepared metal nanoparticles were analyzed using X-ray Diffraction (XRD), which confirmed their crystalline nature. Scanning Electron Microscopy (SEM) was employed to study the surface morphology, revealing that the nanoparticles generally exhibit a spherical shape and a tendency to form aggregates. High-Resolution Transmission Electron Microscopy (HRTEM) and X-ray Photoelectron Spectroscopy (XPS) provided further insights into the size distribution and surface characteristics of the nanoparticles. The average particle size for Aluminum and Nickel nanoparticles was found to be approximately 100 nm and 70 nm, respectively. Elemental analysis indicated the presence of metallic bonding and minimal surface contamination. The uniformity and nanoscale dimensions of these particles suggest their potential for a wide range of technological applications. This study emphasizes the importance of metal nanoparticles in areas such as catalysis, electronics, biomedical engineering, and sensor development, while also highlighting the significance of various synthesis and characterization techniques in advancing the field of nanoscience.

 

Key Words:  Aluminum NP, Copper NP, Nickel NP, Silver NP.

Harsha Ram,  Dr. Kishor Patel  (2025); SYNTHESIS AND MULTI-TECHNIQUE ANALYSIS OF METAL NANOPARTICLES: A CASE STUDY OF AL, CU, NI, AND AG,.  Journal of Science and Healthcare Exploration (JSHE), Vol-7, Issue-8, Pp.1-7.   Available on – https://jshe.researchculturesociety.org/

  1. Begum, R., Farooqi, Z. H., Naseem, K., Ali, F., Batool, M., Xiao, J., & Irfan, A. (2018). Applications of UV/Vis spectroscopy in characterization and catalytic activity of noble metal nanoparticles fabricated in responsive polymer microgels: A review. Critical reviews in analytical chemistry, 48(6), 503-516.
  2. Sarina, S., Zhu, H. Y., Xiao, Q., Jaatinen, E., Jia, J., Huang, Y., … & Wu, H. (2014). Viable photocatalysts under solar‐spectrum irradiation: nonplasmonic metal nanoparticles. Angewandte Chemie126(11), 2979-2984.
  3. Wang, Y. W., Hong, B. H., & Kim, K. S. (2005). Size control of semimetal bismuth nanoparticles and the UV− visible and IR absorption spectra. The Journal of Physical Chemistry B109(15), 7067-7072.
  4. Shukla, A. K., & Iravani, S. (2017). Metallic nanoparticles: green synthesis and spectroscopic characterization. Environmental Chemistry Letters15(2), 223-231.
  5. Aziz, S. B., Abdullah, O. G., Saber, D. R., Rasheed, M. A., & Ahmed, H. M. (2017). Investigation of metallic silver nanoparticles through UV-Vis and optical micrograph techniques. International Journal of Electrochemical Science12(1), 363-373.
  6. Voisin, C., Christofilos, D., Del Fatti, N., Vallée, F., Prével, B., Cottancin, E., … & Broyer, M. (2000). Size-dependent electron-electron interactions in metal nanoparticles. Physical review letters85(10), 2200.
  7. Reddy, K. R., Sin, B. C., Ryu, K. S., Kim, J. C., Chung, H., & Lee, Y. (2009). Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synthetic Metals159(7-8), 595-603.
  8. López-Lorente, Á. I., & Mizaikoff, B. (2016). Recent advances on the characterization of nanoparticles using infrared spectroscopy. TrAC Trends in Analytical Chemistry84, 97-106.
  9. Sanz, J. M., Ortiz, D. A. D. L., Alcaraz De La Osa, R., Saiz, J. M., González, F., Brown, A. S., … & Moreno, F. (2013). UV plasmonic behavior of various metal nanoparticles in the near-and far-field regimes: geometry and substrate effects. The Journal of Physical Chemistry C117(38), 19606-19615.
  10. Ray, T. R., Lettiere, B., de Rutte, J., & Pennathur, S. (2015). Quantitative characterization of the colloidal stability of metallic nanoparticles using UV–Vis absorbance spectroscopy. Langmuir31(12), 3577-3586.
  11. Sergeev, G. B. (2003). Cryochemistry of metal nanoparticles. Journal of Nanoparticle Research5(5), 529-537.
  12. Vilain, C., Goettmann, F., Moores, A., Le Floch, P., & Sanchez, C. (2007). Study of metal nanoparticles stabilised by mixed ligand shell: a striking blue shift of the surface-plasmon band evidencing the formation of Janus nanoparticles. Journal of Materials Chemistry17(33), 3509-3514.
  13. Reddy, K. R., Lee, K. P., Lee, Y., & Gopalan, A. I. (2008). Facile synthesis of conducting polymer–metal hybrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles. Materials Letters62(12-13), 1815-1818.
  14. Saravanan, A., Kumar, P. S., Devi, G. K., & Arumugam, T. (2016). Synthesis and characterization of metallic nanoparticles impregnated onto activated carbon using leaf extract of Mukia maderasapatna: Evaluation of antimicrobial activities. Microbial pathogenesis97, 198-203.
  15. Phung, X., Groza, J., Stach, E. A., Williams, L. N., & Ritchey, S. B. (2003). Surface characterization of metal nanoparticles. Materials Science and Engineering: A359(1-2), 261-268.
  16. Kulkarni, N., & Muddapur, U. (2014). Biosynthesis of metal nanoparticles: a review. Journal of Nanotechnology2014(1), 510246.
  17. Vijayaram, S., Razafindralambo, H., Sun, Y. Z., Vasantharaj, S., Ghafarifarsani, H., Hoseinifar, S. H., & Raeeszadeh, M. (2024). Applications of green synthesized metal nanoparticles—a review. Biological Trace Element Research202(1), 360-386.
  18. Guczi, L., Beck, A., Horvath, A., Koppány, Z., Stefler, G., Frey, K., … & Lynch, J. (2003). AuPd bimetallic nanoparticles on TiO2: XRD, TEM, in situ EXAFS studies and catalytic activity in CO oxidation. Journal of Molecular Catalysis A: Chemical204, 545-552.
  19. Tabrizi, N. S., Xu, Q., Van Der Pers, N. M., Lafont, U., & Schmidt-Ott, A. (2009). Synthesis of mixed metallic nanoparticles by spark discharge. Journal of nanoparticle Research11(5), 1209-1218.
  20. Bykkam, S., Ahmadipour, M., Narisngam, S., Kalagadda, V. R., & Chidurala, S. C. (2015). Extensive studies on X-ray diffraction of green synthesized silver nanoparticles. Adv. Nanopart, 4(1), 1-10.
  21. da Silva, B. F., Pérez, S., Gardinalli, P., Singhal, R. K., Mozeto, A. A., & Barceló, D. (2011). Analytical chemistry of metallic nanoparticles in natural environments. TrAC Trends in Analytical Chemistry30(3), 528-540.
  22. Das, R., Pachfule, P., Banerjee, R., & Poddar, P. (2012). Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): finding the border of metal and metal oxides. Nanoscale4(2), 591-599.
  23. Wojcieszak, R., Genet, M. J., Eloy, P., Ruiz, P., & Gaigneaux, E. M. (2010). Determination of the size of supported Pd nanoparticles by X-ray photoelectron spectroscopy. Comparison with X-ray diffraction, transmission electron microscopy, and H2 chemisorption methods. The Journal of Physical Chemistry C114(39), 16677-16684.
  24. Yan, W., Petkov, V., Mahurin, S. M., Overbury, S. H., & Dai, S. (2005). Powder XRD analysis and catalysis characterization of ultra-small gold nanoparticles deposited on titania-modified SBA-15. Catalysis Communications6(6), 404-408.
  25. Zhou, X., Huang, X., Qi, X., Wu, S., Xue, C., Boey, F. Y., … & Zhang, H. (2009). In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. The Journal of Physical Chemistry C113(25), 10842-10846.
  26. Vogel, W., Timperman, L., & Alonso-Vante, N. (2010). Probing metal substrate interaction of Pt nanoparticles: structural XRD analysis and oxygen reduction reaction. Applied Catalysis A: General377(1-2), 167-173.
  27. Khanna, P., Kaur, A., & Goyal, D. (2019). Algae-based metallic nanoparticles: Synthesis, characterization and applications. Journal of microbiological methods163, 105656.
  28. Choi, S. M., Seo, M. H., Kim, H. J., & Kim, W. B. (2011). Synthesis and characterization of graphene-supported metal nanoparticles by impregnation method with heat treatment in H2 atmosphere. Synthetic Metals161(21-22), 2405-2411.
  29. Lee, C. F., Chang, C. L., Yang, J. C., Lai, H. Y., & Chen, C. H. (2012). Morphological determination of face-centered-cubic metallic nanoparticles by X-ray diffraction. Journal of colloid and interface science369(1), 129-133.
  30. Duan, Y., & Li, J. (2004). Structure study of nickel nanoparticles. Materials Chemistry and Physics87(2-3), 452-454.

Download Full Paper

Download PDF No. of Downloads:9 | No. of Views: 29